Outline

Introduction and Motivation

Point Isolation Problem (Chapter 2)
 Approximation Algorithm for the Point Isolation Problem
 NP-completeness of the Point Isolation Problem

Covering the Boundary of a Simple Polygon
 Approximation Factor
 Algorithm: Implementation and Running-time

Combinatorial Separation Results

Packing \mathbb{R}^3 with Thin Tori
Motivation: Sensor Networks

- Full Coverage: Historically the topic of interested in Sensor Networks

- Barrier Coverage: Recently, sensors used to provide *barriers* as a defense mechanism against intruders at buildings, estates, national borders etc.
Given a set of points and a set of separating objects (line segments, disks), select the minimum number of separators such that every path between two points is intersected.
Outline

Introduction and Motivation

Point Isolation Problem (Chapter 2)
 Approximation Algorithm for the Point Isolation Problem
 NP-completeness of the Point Isolation Problem

Covering the Boundary of a Simple Polygon
 Approximation Factor
 Algorithm: Implementation and Running-time

Combinatorial Separation Results

Packing \mathbb{R}^3 with Thin Tori
Separating Points using Disks

Problem (Point Isolation Problem [1])

Given a set S of k points in the plane and a collection \mathcal{D} of n unit disks embedded in the plane, no disk contains a point of S. Find a minimum cardinality subset $\mathcal{D}' \subseteq \mathcal{D}$, s.t. every path between any two points in S is intersected by at least one disk in \mathcal{D}'.

Separating Points using Disks

Problem (Point Isolation Problem [1])

Given a set \(S \) of \(k \) points in the plane and a collection \(\mathcal{D} \) of \(n \) unit disks embedded in the plane, no disk contains a point of \(S \). Find a minimum cardinality subset \(\mathcal{D}' \subseteq \mathcal{D} \), s.t. every path between any two points in \(S \) is intersected by at least one disk in \(\mathcal{D}' \).

Motivation

Sensor Networks:

- *Full coverage*: expensive
- *Barrier coverage*: only detect certain spacial transitions among the observed objects

Motivated by this:

- [1] presents a constant-factor approximation algorithm
- But problem complexity open.

Problem (Circle 2-Cells-Separation Problem)

Given a set of n Circle and two points s and t, select the minimum number of circles one needs to retain so that any s-t path intersects some of the retained segments.

Theorem (Cabello et al., SoCG13)

Can be computed in time $O(nk + n^2 \log n)$, k being the number of Circle intersections.
A recursive approximation Algorithm for \(k \)-points

\[
\text{recSep}(Q, D)
\]

1. If \(|Q| \leq 1\), return \(\emptyset\).
2. For every pair of points \(s, t \in Q \), invoke the subroutine to find a minimum cardinality subset \(B_{s,t} \subseteq D \) such that \(B_{s,t} \) separates \(s \) and \(t \).
3. Let \(B_Q \) denote a minimum size subset \(B_{s,t} \) over all pairs \(s, t \in Q \).
4. Let \(Q_1 \) and \(Q_2 \) be the partition of \(Q \) into two subsets such that each subset corresponds to points in the same face induced by the arrangement of disks in \(B_Q \).

\[
\text{return } B_Q \cup \text{recSep}(Q_1, D) \cup \text{recSep}(Q_2, D)
\]
A recursive approximation Algorithm for k-points
The union complexity of \(m \) disks is \(2(3m - 6) \).
Approximation factor = 6

1. Optimal separator for 2 points has exactly one bounded face.
2. Associate the arrangement B computed in a recursive call with the point s in the bounded face, i.e. $B_s = B$.
3. Let F_s be the disks in OPT surrounding s. ($|B_s| \leq |F_s|$)
4. $$\sum_{p \in S} |B_p| \leq \sum_{p \in S} |F_p|.$$
5. No two faces F_s, F_t of OPT have any arcs in common \Rightarrow.
6. Decomposing OPT into F_{p_1}, \ldots, F_{p_k} yields a partition of the boundary arcs $B(OPT)$
7. $$|\text{recSep}(S, D)| \leq \sum_{p \in S} |B_p| \leq \sum_{p \in S} |F_p| = |B(OPT)| \leq 6|OPT|$$
Main Result

Theorem

The Point Isolation Problem is NP-complete if the number of points is not fixed.
Problem (Planar unweighted Multiterminal Cut Problem)

Given a planar unweighted graph $G = (V, E)$ and a set $S \subseteq V$ of k terminals, find a minimum cardinality set $E' \subseteq E$ such that in $G' = (V, E \setminus E')$ there is no path between any two nodes in S.
Relevant Problems

Problem (Planar unweighted Multiterminal Cut Problem)

Given a planar unweighted graph $G = (V, E)$ and a set $S \subseteq V$ of k terminals, find a minimum cardinality set $E' \subseteq E$ such that in $G' = (V, E \setminus E')$ there is no path between any two nodes in S.

Theorem (Johnson, Papadimitriou, Seymour, Yannakakis, 1994)

NP-complete if k is not fixed.
Planar Subdivision Problem

Problem (Planar Subdivision Problem)

Given a planar graph $G = (V, E)$ embedded in the plane and a set S of k points properly contained in the faces of G with no face containing more than one point, find the minimum cardinality set $E' \subseteq E$ such that in the embedding of the reduced graph $G' = (V, E')$, no two points of S are contained in the same face.
Planar Subdivision Problem

Problem (Planar Subdivision Problem)

Given a planar graph $G = (V, E)$ embedded in the plane and a set S of k points properly contained in the faces of G with no face containing more than one point, find the minimum cardinality set $E' \subseteq E$ such that in the embedding of the reduced graph $G' = (V, E')$, no two points of S are contained in the same face.
Complexity of the Planar Subdivision Problem

Proposition

The Planar Subdivision Problem is NP-complete if \(k \) is not fixed, even for connected graphs.
Given an planar unweighted Multiterminal Cut Instance
Construct the geometric dual multigraph
subdivide each edge
put a point in each relevant face
solve the planar subdivision problem
retrieve solution to the Multiterminal Cut problem
retrieve solution to the Multiterminal Cut problem
Goal is:

Theorem

The Point Isolation Problem is NP-complete if the number of points is not fixed.
Proof outline for Point Isolation Problem

1. Given a connected instance \(I = (G, S) \) of the Planar Subdivision Problem
2. Build equivalent straight line embedding on an \(n \times n \) grid [2]
3. Replace each edge by a path of \(c_E \) many unit disks
4. Replace each vertex by a cycle of \(c_V \) many unit disks.
5. For each \(s \in S \) put point into the corresponding face in the disk arrangement.
6. Solve the Point Isolation Instance \(f(I) \) and retrieve solution for \(I \)

Edge Gadget

- Every edge gadget consists of a path of c_E many unit disks

- c_E, a, h and s are constant for all edge gadgets

- $1 - (2s + 2a) \leq b \leq \sqrt{2n} - (2s + 2a)$, depending on the length of the embedded edge e.
Vertex Gadget

\(c_V \) many disks of radius \(r \) arranged on a circle of radius \(s \) around vertex \(v \), with \(c_V = \lceil \pi s / r \rceil \).

- Incident edge gadgets intersect some disks in the edge gadget.
- Removing a single disks from an edge gadget merges two regions.
Dimension Constraints

Assure that no edge gadget intersect any non-incident vertex gadget.

Observation

In an \(n \times n \) grid, the minimum distance between any line \(l \) through two grid points and any grid point not on \(l \) is \(1/\sqrt{2n^2 - 2n + 1} \).
Dimension Constraints

Assure that no two incident edge gadget intersect each other.

Observation

In an $n \times n$ grid, for any grid point p the minimum angle between any two distinct lines, each going through p and at least one other grid point, is larger than $2 \arctan \frac{1}{(6n^2)}$.
Dimension Constraints

\[
\begin{align*}
2(r + s) &< 1 & \text{VGs disjoint} \\
2(r + s + h/2) &< (2n^2 - 2n + 1)^{-\frac{1}{2}} & \text{Non-inc. VGs, EGs disj.} \\
2\frac{h}{2} &< (2n^2 - 2n + 1)^{-\frac{1}{2}} & \text{Non-incident EGs disj.} \\
\left\lceil \frac{\sqrt{2n-2s}}{2r} \right\rceil - 2\left\lceil \frac{a}{2r} \right\rceil &< \left\lceil \frac{h}{2r} \right\rceil \cdot \left\lfloor \frac{1-2(a-s)}{2r} - 1 \right\rfloor & \forall \text{EGs contain } c_E \text{ disks}
\end{align*}
\]

Satisfied with \(r = \frac{1}{40n^4} \) and \(h = \frac{1}{12n^2} \) for all \(n \geq 2 \), when setting \(a = 1/4 \) and \(s = 1/(7n^2) \).
Equivalence

Lemma

I of the Planar Subdivision Problem has a solution of size \(\leq B \)
\iff
\(f(I) \) of the Point Isolation Problem has a solution of size
\(\leq C_E(B + 1) - 1 \)

Note that \(nc_V < c_E \)
Containment in NP

Given $\mathcal{D}' \subseteq \mathcal{D}$, to an instance $I = (S, \mathcal{D})$ of the Point Isolation Problem and $B \in \mathbb{N}$:
Verify in polynomial time if \mathcal{D}' is a solution of I with $|\mathcal{D}'| \leq B$.

- Build the embedded intersection graph G of \mathcal{D}', add vertex at each edge crossing.
- this gives a line segment arrangement
- S separated in $\mathcal{D}' \iff S$ separated in arrangement
- Point location in arrangement for each point reject \iff the same face of is reported twice.
Complexity of Multiterminal Cut on Unit Disk Graphs

Theorem

The Multiterminal Cut Problem remains NP-complete on unit disk graphs if k is not fixed.
Outline

Introduction and Motivation

Point Isolation Problem (Chapter 2)
 Approximation Algorithm for the Point Isolation Problem
 NP-completeness of the Point Isolation Problem

Covering the Boundary of a Simple Polygon
 Approximation Factor
 Algorithm: Implementation and Running-time

Combinatorial Separation Results

Packing \mathbb{R}^3 with Thin Tori
Problem Setting

Problem

Given a region, bounded by a piecewise linear closed border, such as a fence, place few guards inside the fenced region, such that wherever an intruder cuts through the fence, the closest guard is at most a distance one away.
Problem Setting

Problem

Given a region, bounded by a piecewise linear closed border, such as a fence, place few guards inside the fenced region, such that wherever an intruder cuts through the fence, the closest guard is at most a distance one away.
Geodesic Unit Disk

Definition
A *geodesic unit disk* centered at a point v in a polygon P is the set of all points in P whose shortest path distance to v is at most 1.

Problem (Boundary Coverage)
Given a simple polygon, cover its boundary with the minimum number of Geodesic Unit Disks.
Greedily cover the longest uncovered boundary portion
⇒ $\Omega(\log n)$ approximation
Contiguously cover the longest uncovered boundary portion $\Rightarrow \geq 2$ approximation
Contiguously cover the longest uncovered boundary portion $\Rightarrow \geq 2$ approximation
ContiguousGreedy

c ← v₁, v_u ← v₂
S ← ∅

while ∂P not covered:
 1. If c⁻¹v_u is longer than 2
 compute centers on c⁻¹v_u at steps of 2; add them to S; update c
 2. Update v_u to the first vertex s.t. ∂P[c, v_u] cannot be covered
 by a single disk, using Exponential and Binary Search with
 predicate TestCover
 3. Use AugmentShort to cover the vertices between c and v_u,
 and a maximal portion of the edge v_u⁻¹v_u; add new center to
 S and update c

end while

return S
Figure: Illustration of the δ-thin polygon where an ϵ-approximate contiguous extension algorithm results in an approximation ratio larger than 2.
Definition
A coloring of ∂P is a function $\gamma : \partial P \rightarrow \mathbb{N}$. The number of colors used by γ is defined as the cardinality of the image of γ.

Definition
A block is a connected component of ∂P colored with a single color.

Definition
We let ∂P_i denote the subset of the polygon boundary colored with color i and we call each connected component of $\partial P \setminus \partial P_i$ a pocket of ∂P induced by color i (see Fig. ??(b)).
Approximation Factor

Definition
A coloring of ∂P is called \textit{crossing-free} if for any two distinct colors i, j, it holds that ∂P_j is contained in a single pocket induced by color i.

Definition
For a collection $\mathcal{D} = \{D_1, \ldots, D_k\}$ of disks covering ∂P, a \textit{disk-coloring} of ∂P w.r.t. \mathcal{D} is a function $\gamma_{\mathcal{D}} : \partial P \rightarrow \{1, \ldots, k\}$, such that $\gamma(x) = i \Rightarrow x \in D_i$, i.e., a point on ∂P can only be colored with one of the indices of the disks covering it.
Definition
For a coloring γ, two of its colors r and b cross each other, if there are two pockets induced by color r containing blocks of color b.
Crossing Colors

Lemma

In any disk-coloring, if two colors \(r \) and \(b \) cross each other, one of the following holds: 1) There exists a pocket induced by color \(r \) which contains blocks of color \(b \) and all these blocks can be re-colored with color \(r \), s.t. the resulting coloring is still a disk-coloring. 2) There exists a pocket induced by color \(b \) which contains blocks of color \(r \) and all these blocks can be re-colored with color \(b \), s.t. the resulting coloring is still a disk-coloring.
Two Lemmas for the Approximation Ratio

Lemma

For any collection of disks covering ∂P, there exists a crossing free disk-coloring of ∂P.
Approximation Ratio

Lemma

For a crossing-free coloring γ using κ colors, let Π_γ be the set of blocks induced by γ. If $\kappa > 1$ then $|\Pi_\gamma| \leq 2(\kappa - 1)$.
Approximation Ratio

Theorem
The number of disk centers placed by \texttt{ContiguousGreedy} is at most $2|\text{OPT}| - 1$.

Proof.
If $|\text{OPT}| = 1$ then, by its greedy nature, \texttt{ContiguousGreedy} also uses only one disk. If $|\text{OPT}| > 1$, let γ_{OPT} be a crossing free disk-coloring of ∂P w.r.t. OPT, whose existence is guaranteed by Lemma 23. We let $(B_1, B_2, ..., B_m)$ be the collection of blocks induced by γ_{OPT} ordered as they appear on ∂P in clockwise order, with B_1 the block containing v_1. We split B_1 at v_1 into two blocks B_l and B_r, with B_l being the portion of B_1 counterclockwise from v_1, and $B_r = B_1 \setminus B_l$.

Now observe that by the greedy nature, every disk D computed by \texttt{ContiguousGreedy} extends Γ so that $\Gamma \cup D$ fully covers at least one new block in the sequence $(B_r, B_2, ..., B_m, B_l)$. Therefore, after computing at most $m + 1$ disks, $\Gamma = \partial P$. By Lemma 24, it holds that $m \leq 2(|\text{OPT}| - 1)$ and the theorem follows.
Running time: $O(n \log^2 n)$

- Let Γ be the currently contiguously covered portion of ∂P.
- We need to place a new disk to extend Γ maximally.
- How (fast) can we do this?
Place the new disk

- Let c be the endpoint of Γ
- We need to find the first vertex v_u of P which can not be covered with a disk containing $c, v_i, v_{i+1}, \ldots, v_{u-1}$.
- Use exponential and binary search w.r.t. interval covered.
- But how to do a single test on $c, v_i, v_{i+1}, \ldots, v_k$?
Intermezzo: Furthest Site Geodesic Voronoi Diagram. Aronov et. al ’88

- combinatorial complexity $O(n + k)$
- constructed in time $O((n + k) \log(n + k))$
- geodesic center of sites obtained for free, root of bisector tree
Single Test: Is $c, v_i, v_{i+1}, \ldots, v_k$ covered?

- Compute shortest path $\pi(c, v_k)$ from c to v_k
- Construct weakly simple polygon $Q = (c, v_i, v_{i+1}, \ldots, v_k) \bullet \pi(c, v_k)$
- Q is geodesic convex, i.e. for any $u, v \in Q : \pi(u, v) \in Q$
- In Q Compute the Furthest site Geodesic Voronoi Diagram of $c, v_i, v_{i+1}, \ldots, v_k$
- This gives their Geodesic Center
- Check if all sites are within distance 1 $\Rightarrow c$ to v_k coverable by single disk.
- Time: $O(|Q| \log n)$
Lemma

Let Q be the set of polygons constructed during the algorithm. It then holds that $\sum_{Q \in Q} |Q| = O(n \log n)$.

Thus if we only spend $O(|Q| \log n)$ time per such polygon, total running time is $O(n \log^2 n)$.
Given v_u, place disk to maximize Γ' in time $\text{Time: } O(|Q| \log n)$

- look at intersection of unit disks centered at $c, v_i, v_{i+1}, \ldots, v_{u-1}$ A (but don’t compute it)
Given \(v_u \), place disk to maximize \(\Gamma' \) in time \(\text{Time}: O(|Q| \log n) \)

- look at intersection of unit disks centered at
 \(c, v_i, v_{i+1}, \ldots, v_{u-1} \) \(A \) (but don’t compute it)

Observation

Let \(\overline{\alpha \beta} \) be a line-segment, such that for all \(a \in A \), \(d(\alpha, a) \leq 1 \) and \(d(\beta, a) > 1 \). For a point \(c \in \overline{\alpha \beta} \) and any disk center \(q \) furthest away from \(c \), it holds that \(d(c, A) = 1 \) if and only if

1. \(d(c, q) = 2 \) and \(\pi(c, q) \cap \partial D(q) \in A \) or
2. \(d(c, I) = 1 \),

with \(I \) denoting the disk-disk intersection points on \(\partial A \).
Hardness

Theorem

Boundary Coverage is NP-hard in polygons with holes.
Proof Outline

Theorem (GJS77)

Vertex Cover on planar graphs of maximum degree 3 is NP-hard.

Observation

In any graph, replacing an edge by a path of odd length k increases a vertex cover by $(k - 1)/2.
Proof Outline

- Taken a planar max deg 3 instance $G = (V, E)$
- Embed a $G' = (V', E')$, obtained from G by replacing edges e by paths of odd length l_e, consisting of straight line edges of length 1.
- Edge: two paths of length 1 connecting u and v. At 0.5, an additional path of length 0.5 is attached.
- G has an VC of size $M \iff P(G')$ has a covering of size $\sum_{e \in E}(l_e - 1)/2 + M$
Covering Long Perimeter Polygons (Preliminary Result)

Theorem

If the polygon perimeter L is at least $n^{1+\delta}$, with $\delta > 0$, a simple linear time algorithm achieves an approximation ratio which goes to one as L/n goes to infinity.

\[
\frac{|D|}{|OPT|} \leq 1 + \frac{O(n)}{|OPT|} = 1 + \frac{O(n)}{\Omega(L)} = 1 + O\left(\frac{n}{L}\right) = 1 + o(1).
\]
Outline

Introduction and Motivation

Point Isolation Problem (Chapter 2)
 Approximation Algorithm for the Point Isolation Problem
 NP-completeness of the Point Isolation Problem

Covering the Boundary of a Simple Polygon
 Approximation Factor
 Algorithm: Implementation and Running-time

Combinatorial Separation Results

Packing \mathbb{R}^3 with Thin Tori
Basic Definitions

Definition
For a set S of n points in the plane, a linear bipartition P of S is a set \{\(U, S \setminus U \)\} consisting of two disjoint nonempty subsets of S which respectively are fully contained in the two open half-planes bounded by some line.

Example
\[S = \{v_1, v_2, v_3, v_4, v_5, v_6\} \subseteq \mathbb{R}^2 \]
\[P = \{\{v_1, v_2, v_3, v_6\}, \{v_4, v_5\}\} \]
Separating Family

Definition
A set \mathcal{P} of linear bipartitions is called a linear separating family for S if for every distinct $p, q \in S$ there is a $P = \{U, S \setminus U\}$ in \mathcal{P}, s.t. $p \in U$ and $q \in S \setminus U$.
We will refer to linear separating families as separating families.

Example

\[
\begin{align*}
\{ \{v_1, v_2, v_3, v_4\}, \{v_5, v_6\}\} \\
\{ \{v_1, v_2, v_3, v_6\}, \{v_4, v_5\}\} \\
\{ \{v_1, v_3, v_4, v_5, v_6\}, \{v_2\}\} \\
\{ \{v_1, v_4, v_5, v_6\}, \{v_2, v_3\}\}
\end{align*}
\]
Definition
A separating family \mathcal{P} for S is called \textit{minimal}, if no proper subset of \mathcal{P} is a separating family for S.

Example

\begin{align*}
S &= \{v_1, v_2, v_3, v_4, v_5, v_6\} \subseteq \mathbb{R}^2 \\
&= \{\{v_1, v_2, v_3, v_4\}, \{v_5, v_6\}\} \\
&\quad \cup \{\{v_1, v_2, v_3, v_6\}, \{v_4, v_5\}\} \\
&\quad \cup \{\{v_1, v_3, v_4, v_5, v_6\}, \{v_2\}\} \\
&\quad \cup \{\{v_1, v_4, v_5, v_6\}, \{v_2, v_3\}\} \\
&\quad \cup \{\{v_1, v_2, v_5, v_6\}, \{v_3, v_4\}\}
\end{align*}
The Problem we Investigated:

“Given \(n \) convex point in the plane, how many...?”

Example

How many minimal separating families of size 3 exist for 6 points in convex position?
Results

For n points in convex position in the plane we present:

- A Bijection to some restricted class of Edge Covers.

- Enumeration results for minimal separating families of size:
 - $\lceil n/2 \rceil$, i.e. the *minimum* size case,
 - $n - 1$, i.e. the *maximum* size case,
Idea

Separating family → abstract graph on \([n]\)

Which graphs correspond to minimal separating families?
Necessary condition: Every vertex needs an incident edge.
Definition
An edge cover on \([n]\) is a set \(H \subseteq \binom{[n]}{2}\) of edges such that every vertex in \([n]\) is incident to at least one edge in \(H\).

Proposition
OEIS[A054548]: The number \(E(n, m)\) of edge covers of size \(m\) on \([n]\) is

\[
E(n, m) = \sum_{i=0}^{n} (-1)^{n-i} \binom{n}{i} \binom{i}{m}.
\]
Observation

Not every edge cover corresponds to a separating family.

Observation

We need some crossings on the edge cover.
Definition
Two edges \(\{a, b\}, \{c, d\} \in \binom{[n]}{2} \) are called crossing, if \(a < c < b < d \).

Definition
Two connected components \(C, D \) are crossing if there are crossing edges \(e, f \) with \(e \in C \) and \(f \in D \).
Crossingly Connected Edge Cover

Definition
An edge cover H is called *crossingly connected* if any two edges e, f in H are contained in the same connected component or there is a sequence C_1, \ldots, C_k of crossing components s.t. $e \in C_1$ and $f \in C_k$.

![Diagram of a graph with nodes and edges illustrating the concept of crossingly connected edge cover.]
First Bijection

Proposition

There is a bijection between the set of all separating families for n points in convex position in the plane and the set of all crossingly connected edge covers on $[n]$.
Enumerating Crossingly Connected Edge Covers

Proposition

For $C(n, m)$ being the number of all crossingly connected edge covers of size m on $[n]$ the following equation holds:

$$E(n, m) = \sum_{i,j>0} C(i,j) \sum_{k_1+\cdots+k_i=n-i, l_1+\cdots+l_i=m-j} E(k_1, l_1) \cdots E(k_i, l_i).$$
Bijection for *minimal* separating families

Theorem

There is a bijection between the set of all minimal separating families for n points in convex position in the plane and the set of all crossingly connected edge covers on \([n]\) such that there is no crossingly connected cycle containing a path of length \(\geq 3\).

![Diagram of a set of points and connecting edges demonstrating the bijection]
Corollary

Any edge cover of size k on $[n]$ which satisfies the condition in the last Theorem consists of $n - k$ non-crossing trees, each of size at least 2.

Thus:

- A family of size $n - 1$ corresponds to a non-crossing tree.
- A family of size $\lceil n/2 \rceil$ corresponds to:
 - A crossingly connected perfect matching on $[n]$, if n is even.
 - A crossingly connected almost perfect matching on $[n]$, if n is odd.
It is well known: [P. Hilton and J. Pedersen, 1991], [S. Dulucq, J. G. Penaud, 1993]

Theorem

The number of non-crossing trees on n points on a circle is

$$\frac{1}{2n-1} \binom{3n-3}{n-1}.$$

Thus we conclude:

Theorem

The number of minimal separating families of size $n - 1$ for a convex n-point set in the plane is

$$\frac{1}{2n-1} \binom{3n-3}{n-1}.$$
Enumeration Results for *minimum size* Families

- **n even:**
 crossingly connected perfect matchings on \([n]\)

- **n odd:**
 crossingly connected almost perfect matchings on \([n]\)
Definition
Let \(e_n \) denote the number of crossingly connected perfect matchings on \([2n]\).
[M. Klazar, 2003]

Theorem
The generating function
\[
E = \sum_{n \geq 1} e_n x^n = x + x^2 + 4x^3 + 27x^4 + \cdots ,
\]
satisfies the differential equation
\[
E' = \frac{E^2 + E - x}{2xE}
\]
n odd

Definition
Let f_n denote the number of crossingly connected almost perfect matchings on $[2n + 1]$.

Theorem
The generating function

$$F = \sum_{n \geq 1} f_n x^n = 3x + 15x^2 + 126x^3 + 1395x^4 + \cdots,$$

is related to E by

$$xF = E^3 E' + 2xE^3 E'' + E^2 - x^2$$
The Main Theorem

Theorem

The number s_n of minimal linear separating families of minimum size for n points in convex position in the plane is

$$s_n = \begin{cases} (k - 1) \sum_{i=1}^{k-1} s_{2i}s_{2(k-i)} & \text{if } n = 2k \\ s_{n+1} \frac{(2k+1)(k+1)}{2k} & \text{if } n = 2k + 1 \end{cases}$$

for all $n \geq 3$, with $s_2 = 1$.
Asymptotic Behavior

Denoting by \(q_k \) the number of near-matchings on \([2k + 1]\) the following proposition holds.

Proposition

\[
\lim_{k \to \infty} \frac{f_k}{q_k} = e^{-1}
\]

It holds that

\[
\lim_{k \to \infty} e_{k+1} \frac{2^{k+1}(k+1)!}{(2k+2)!} = e^{-1}
\]

and it is easy to show that \(q_k = \frac{(2k + 1)!}{(2^k(k - 1)!)} \).

Thus it follows that

\[
\lim_{k \to \infty} \frac{f_k}{q_k} = \lim_{k \to \infty} e_{k+1} \frac{2^{k+1}(k+1)!}{(2k+2)!} \frac{(2k + 2)(2k + 1)}{4k^2} = e^{-1}.
\]
Basic Definitions

Definition
We mean by a *bipartition* a set partition consisting of at most two components. We call a bipartition *proper* if it consists of exactly two components.

Definition
A family \(\mathcal{P} \) of bipartitions of a set \(S \) is called a *separating* family for \(S \) if every two elements of \(S \) can be cut by some bipartition in \(\mathcal{P} \). A separating family \(\mathcal{P} \) for \(S \) is *minimal* if no proper subfamily of \(\mathcal{P} \) is a separating family for \(S \).
Example

Let \(S = \{1, 2, 3, 4\} \). Let \(P_1, P_2, Q_1, Q_2, Q_3 \) be the bipartitions defined as:

\[
P_1 = \{\{1, 2\}, \{3, 4\}\}, \quad Q_1 = \{\{1\}, \{2, 3, 4\}\},
\]
\[
P_2 = \{\{1, 3\}, \{2, 4\}\}, \quad Q_2 = \{\{1, 2\}, \{3, 4\}\},
\]
\[
P_3 = \{\{1, 2, 3\}, \{4\}\}.
\]

Then the family of bipartitions \(\{P_1, P_2\} \) is a minimal separating family of minimum size for \(S \), while \(\{Q_1, Q_2, Q_3\} \) is that of maximum size.
Outline

Introduction and Motivation

Point Isolation Problem (Chapter 2)
 Approximation Algorithm for the Point Isolation Problem
 NP-completeness of the Point Isolation Problem

Covering the Boundary of a Simple Polygon
 Approximation Factor
 Algorithm: Implementation and Running-time

Combinatorial Separation Results

Packing \mathbb{R}^3 with Thin Tori
Packing \mathbb{R}^3 with Thin Tori

- Sphere: only non-tiling body for we know the exact packing density [Hales’05]
- Very limited amount of literature studying packings involving non-convex objects:
- We like to extend this line of research by considering packings with the possibly simplest non-convex shape, the torus.
Packing \mathbb{R}^3 with Thin Tori

Problem

Can \mathbb{R}^3 be packed at a positive density with tori of major radius $R = 1$ and minor radius r going to 0?

Volume of torus $= \Theta(r^2)$
Volume of bounding box of torus $= \Theta(r)$

\Rightarrow

Volume of torus / Volume of bounding box of torus $\rightarrow 0$
Proof Strategy: Lattice Arrangement of thick tori

- With major radius 1 and minor radius r, (t.b.d.)
- Center those thick tori at lattice points
- Then pack each of those thick tori with thin tori of major radius 1 and minor radius going to 0
Packing density $\delta_L(r)$ for thick tori

All thick tori are centered at lattice points generated by vectors:

\[
\begin{pmatrix}
2 + \sqrt{3}r \\
0 \\
r
\end{pmatrix}, \quad \begin{pmatrix}
1 + r \\
\sqrt{3}(1 + r) \\
0
\end{pmatrix}, \quad \begin{pmatrix}
0 \\
0 \\
2r
\end{pmatrix}
\]

Packing density of thick tori w.r.t. \mathbb{R}^3 as function of r:

\[
\delta_L(r) = \frac{\text{volume of single thick torus}}{\text{volume of lattice parallelepiped}} = \frac{\pi^2 r}{\sqrt{3} (2 + \sqrt{3}r)(1 + r)}
\]
Next show that a single thick torus can be packed with thin tori (with minor \(\rightarrow 0\)) at density \(\delta_T(r) > 0\).

Thus overall packing density is

\[\delta(r) = \delta_L(r)\delta_T(r) > 0 \]

But how to pack a single thick torus?
Idea for Packing: Villarceau Circles

Definition
A pair of Villarceau circles on the surface of the torus is produced by cutting a torus diagonally through the center with a bitangential plane.

Observation
These circles have a radius which correspond to the major radius of the torus.
Villarceau Circles
Villarceau Circles
Villarceau Circles
Proof Strategy: Replace circle with a thin torus $T(1, s)$

Problem
Given a torus $T(R, r)$, lying in the xy-plane and two Villarceau circles c_0, c_1 lying in the bitangential planes H_0, H_1 respectively. How much must the minimum angular distance α around the z-axis between H_0 and H_1 be such that the minimum distance between c_0 and c_1 is at least $2s$?

The $2s$ neighborhood of the surface of a thick torus can be packed with $2\pi/\alpha$ many thin tori.
Proof Strategy: Nested Construction

Place \(\left\lfloor \frac{r-s}{2s} \right\rfloor \) many nested constructions into the thick \((1, r)\) torus.
Pairwise linking of tori

Problem
How many tori of major radius 1 and minor radius \(s \) can be pairwise linked, as a function of \(s \)?

Fact: The Villarceau circles of one torus are all pairwise linked.

Easy Claim: The Villarceau circles of the nested torus sequence are all pairwise linked.